Experiments with TVWS Access

Access Delay and Energy Consumption

N. Çiček, N. Brouwers, P. Pawelczak, G. Leus and K. Langendoen

Embedded Software Group

June 12, 2014
1 Motivation
 - No Energy/(Delay) Evaluation of WSDB Access

2 Approach
 - The Idea
 - Methodology
 - Embedded Energy Measurement Platform
 - WSDB Connection
 - Local Spectrum Sensing

3 First results
 - Analysis
Motivation

"spectrum sensing is expensive—in cost, energy consumption and complexity of the circuitry."

But is it really so?
The Idea

1. Connect to WSDB through Android-based smartphone and collect data on
 ▶ Access delay (query → response)
 ▶ Energy consumed (per RAT, per smartphone)

2. Perform local spectrum sensing with Android-powered SDR platform and collect data on
 ▶ Access delay (time until whole sensing is done)
 ▶ Energy consumed (per dongle)

3. Analyze data, model results, suggest sensing strategies for embedded devices
Measuring Energy Consumption

Neat Power Measurement Toolkit

- Custom-build power measurement platform [“Embedded Monsoon”]
- Correlates system events with energy use
- Android-based, 2 kHz sampling, SD Card storage, external battery

WSDB Connection

- Open API allows for DB connection simulations (with randomized locations)
- Record response time (trace) and energy consumption (Neat)

Available WSDBs

- https://www.google.com/get/spectrumdatabase
- http://specobs.ee.washington.edu
- http://whitespaces.cloudapp.net/WSFinder.aspx
- http://observatory.microsoftspectrum.com
DTV Sensing Hardware: RLT-SDR

‘RTL-SDR’

- Website: http://www.rtl-sdr.com
- DVB-T TV tuner dongle based on the RTL2832U chipset
- Raw I/Q samples (debug mode), 2.4MS/s, 8 bit resolution

- 3 different RTL dongles in the lab available for experiments
- Connection to Android through USB on-the-go cable

Source: http://sdr.osmocom.org/trac/wiki/rtl-sdr
DTV Sensing Software: Osmocom

- Software: http://sdr.osmocom.org/trac/wiki/rtl-sdr
- Spectrum sensing by use of rtl_power file directly

Sensing procedure

- Store channel begin and end frequencies [lookup table, location specific]
- Scan for 20 ms, 4 kHz bin size, left/(right) edge of of TV spectrum (0.5 MHz) [256 FFT]
- Scan for digital TV only [no wireless mics, wireless video links, etc.]
 - Channel by channel hopping [36 channels in US, 47 channels in NL], full sweep in approx. 2 sec
 - Trigger of sensing process: user based, no algorithm for sensing scheduling [presently]
Phone/Dongle Connection
RTL-SDR Sensing: Example Trace

Measurement setup
- Channel 21
- 10 consecutive measurements
- TU Delft, 9th floor EWI Department

Experiments with TVWS Access
Results: Access Delay

Experiments with TVWS Access
Results: Response Size

Experiments with TVWS Access
Results: Phone Energy Consumption

Mean and Standard Deviation Analysis of Energy Consumption

Experiments with TVWS Access
Energy Consumption Model

- **Observation I**: Energy scales linearly with no. channels sensed (RTL-SDR)
- **Observation II**: Energy scales time taken for sensing reply (WSDB)

 \[E[E] = aE[t] + c, \quad t \in [t_{\text{min}}, t_{\text{max}}] \]

 a: energy ratio (per network/per device)
 c: ramp-up

Experiments with TVWS Access
Results: Energy/Delay

Experiments with TVWS Access
Ideas from the Experiments

Sensing selection algorithm

- **What is better**: latency-prone measurement with high accuracy (WSDB) depending on network access, or localized “crappy” spectrum measurements (RTL-SDR)?

Theory of optimal channel selection

- **Lower bound for the interference probability** (both PU/SU) considering channel information accuracy and energy spent on sensing