Enhancing Throughput in 802.11

Richard van Nee Qualcomm Breukelen, The Netherlands rvannee@qualcomm.com

Example of large scale WiFi network: Super Bowl

- 604 access points provided free WiFi at 2012 Super Bowl in Indianapolis
- 12,946 attendees (19%) connected to the network at some point during the game.
- Maximum of 8,260 simultaneous connections
- Directional Antennas were used to illuminate parts of the stadium from above, minimizing interference to neighboring cells

"As cellular and WiFi get congested, fans might actually have to watch the game."

http://arstechnica.com/features/2012/08/why-your-smart-device-cant-get-wifi-in-the-home-teams-stadium/

IEEE 802.11 MAC

- Time Division Duplex
- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA, also known as Listen Before Talk)

- SIFS: Short Inter Frame Spacing: time between end of packet and start of acknowledgment
- DIFS = SIFS + 2 slot times
- Backoff: uniformly distributed number of slots between 0 and CW (Contention Window)
- CW = aCWmin initially, increases for retries until aCWmax
- Throughput efficiency for single transmitter-receiver pair = Tdata/(2Tpreamble+Tdata+Tack+SIFS+DIFS+Tbackoff)
 - Typical efficiency is about 75%
- Distributed MAC provides easy scaleability of 802.11 networks without any centralized coordination
 - 2 neighbor networks in the same channel that are close together will automatically share the total capacity
 - Key to success of 802.11

Ways to Increase Throughput

More bandwidth

- 40MHz channels introduced in 11n
- 80MHz and 160MHz channels introduced in 11ac
- Higher signal constellation
 - 256-QAM introduced in 11ac
- More spatial streams (SU-MIMO or MU-MIMO)
 - Up to 4 streams in 11n and 8 streams in 11ac
- Reduce protocol overhead
 - Aggregation to make data portion of packets much larger than total PHY+MAC overhead

802.11 Data Rate Growth

Wireless LAN Spectrum in 2.4 and 5 GHz

- 83.5 MHz in 2.4 GHz : 3 or 4 channels
- 455 MHz in 5 GHz : 19 20MHz channels (or

9x40, 4x80, or 2x160MHz channels)

 Note that FCC recently excluded transmission in any channel overlapping the weather radar band 5600-5650 until new coexistence rules are developed

Radar Detection

- Radar detection is required in 5.25 to 5.725 GHz
 - WiFi is not allowed to use a channel where radar is detected
 - Example of cognitive radio

- Measured radar pulse from KNMI
 weather radar in De Bilt at 5666MHz
- Pulse detected inside Breukelen
 Qualcomm office at 14km distance

802.11 Wireless LAN Standards (1)

- 2.4 GHz
 - IEEE 802.11b
 - 11 and 5.5 Mbps using Complementary Code Keying
 - 2 and 1 Mbps using Barker code
 - IEEE 802.11g
 - Brings 802.11a OFDM in 2.4 GHz band
 - Defines some mechanisms for coexistence between 802.11b and 802.11a
- 5 GHz
 - IEEE 802.11a
 - OFDM, 6 to 54 Mbps
 - IEEE 802.11n
 - MIMO-OFDM, 6.5 to 600 Mbps
 - IEEE 802.11ac
 - Single User and Multi-User MIMO, 6.5 to 6933 Mbps

802.11 Wireless LAN Standards (2)

Below 1GHz

- IEEE 802.11ah (under development)
 - OFDM, MIMO-OFDM, MU-MIMO
 - Data rates from 150kbps to 86Mbps
 - Low data rates targeted for low power sensors
 - Sleep modes for multi-year battery operation
- IEEE 802.11af (under development)
 - Downclocked 11ac 40MHz mode in TV white space channels fo 6, 7, or 8MHz
 - Data rates from 800kbps to 106Mbps
- 60 GHz
 - IEEE 802.11ad
 - Single carrier and OFDM
 - Data rates from 27Mbps to 6756Mbps
 - Low range only, sensitive to signal blockage

802.11ac

- 5GHz band only
- 20, 40, 80, 160MHz channels
- Single-User MIMO defined up to 8 streams
- Multi-User MIMO defined up to 4 streams from 2 to 4 different clients
- Explicit channel feedback for both Single-User and Multi-User beamforming
- **256-QAM**
- Aggregation up to 1MB (16kB in 11n)
- Peak data rate of 6933Mbps for 8 streams in 160MHz
 - 433Mbps for a single antenna device (like most smartphones) in 80MHz
 - 1733Mbps for a 4-antenna / 4-stream device in 80MHz

Multiple Input Multiple Output (MIMO)

 Increase data rate without increasing bandwidth by transmitting multiple simultaneous data streams from different antennas

MIMO-OFDM Basics

- With multiple antennas at both transmitter and receiver, capacity increases by a factor that is minimum of number of TX/RX antennas¹
- E.g., with 2 TX and 2 RX, users can transmit 2 times the data rates compared to a single antenna link by using spatial division multiplexing
- Multiple Input Multiple Output (MIMO) capacity is larger in presence of multipath
 → MIMO exploits multipath rather than fighting it
- For non-MIMO rates, multiple TX/RX antennas increase range by a combination of transmit diversity and optimal receive diversity
- Orthogonal Frequency Division Multiplexing (OFDM) is used to avoid intersymbol interference, which simplifies implementation of MIMO²
- ¹ G.G. Raleigh and J.M. Cioffi, 'Spatio-Temporal Coding for Wireless Communications,' GLOBECOM '96, London, November 1996, pp.1809-1814.
- ² G.G. Raleigh and V.K. Jones, 'Multivariate Modulation and Coding for Wireless Communication,' IEEE Journal on Sel. Areas in Comm., Vol. 17, No. 5, May 1999, pp. 851-866.

Measured MIMO Capacity

- Channel measurements using a 16 antenna array at both sides of a link shows capacity around 50 bps/Hz
 - For comparison: UMTS peak capacity is 0.4 bps/Hz (2Mbps in 5MHz channel)
 - 11n 4 streams peak capacity is 15 bps/Hz (600Mbps in a 40MHz channel)

Each CDF curve reflects a different test location

Capacity calculation was performed as follows:

- Calculate MMSE postprocessing SINR at each tone, assuming 24 dB SNR per antenna.
- 2. Convert SINR at each tone to capacity.
- 3. Average capacities across all tones across 20 MHz BW

Note: Green and Black curve are capacities derived from channel models, all other curves are based on measurements

- Access Point transmits packets to multiple clients simultaneously
- Network throughput is increased rather than increasing the maximum throughput for a single link
- 802.11ac defines MU-MIMO for up to 4 MU streams to 2 to 4 MU clients

Potential New 802.11 Standards

UWB 3-9GHz

- Similar data rates and ranges possible as 11ad
- 5GHz 11ac Enhancements
 - Uplink MU-MIMO
- Cellular data offload
 - Specify interworking mechanisms between cellular and WiFi networks

