

Experience from an SME

Frank Brouwer

0 0 0 0 0 0 0 0

CR Problem definition

- Demand for 'good' spectrum increases
 In particular for Public Safety
- Actual use of spectrum is time and place dependent
- Traditional allocations are static

 Leave insufficient options for new applications

 Spectrum is a common resource while it is allocated exclusively

Actual spectrum usage

Observation:

"Local Spectrum is Full of Holes"

Co-existance is a natural way

What we need: CR Autonomous Dynamic Spectrum Utilization

'Cognitive Radio' is not new ALOHA: CSMA – Random backoff DECT: Least Channel Interference Within one technology WiFi Carrier Sense Multiple Access (CSMA) Dynamic Frequency Selection (DFS) in 5 GHz Automatic Channel Selection Co-existence with Bluetooth, radar, ...

The AAF Project (2003-2008)

- Research project: Adaptive Ad-hoc Freeband communications
- Ambitions
 - Physical resource discovery and selection
 - Frequency, time, place
 - Re-configurable radio system (SDR)
 - Ad-hoc networking
 - Centralized or decentralized control
 - Legal aspects
- WMC, Thales, TU Delft, UTwente

Findings during project Full fledged solutions require Legislation in spectral allocation Standardization between industries Technology development Scope too big for SME Legislation is a long process with a heavy lobby The technology gap is too big for an SME

What is in scope of an SME

Option 1: Focus on one element

- Full effort on standardization
- Dependency on large industry
- Long term only
- Extreme high cost

Option 2: Bring existing elements together

- More competition from current solutions
- Flexibility
- Shorter term
- High cost still

What CR can be done now

Our challenge:

"Can we create a smart solution that enhances reliability and bandwidth for mobile communications?"

Requirements

- More than the standard radio
- Within legislation
- Target users: Public Protection and Disaster Relief

0 0 0 0 0 0 0

Source: projectmesa.org

Estimation of capacity

- Train crash scenario
 - Passenger train and freight train with dangerous substances crash near filled stadium
- Deployment
 - Firemen, Paramedics, Police, Experts, Rescue workers
 - First responder vehicles, Ambulances, Command vehicles, Robots, Helicopters

The disaster relief team requires an on-scene capacity of 100 Mbps during the operation.

Bandwidth versus Distance

 \odot

0000000

FIGO: Cognitive radio Network

FIGO Ad-hoc mesh network

Mobile Node 2 (router)

Cognitive radio network: FIGO Multi radio – preLTE Multiple bands combined High bandwidth Selecting best available channels Ad-hoc network Always Best Connected Local communication remains local Interface with applications

Current Development

- TV White Space accepted in US
- CEPT SE43
 - In the operation of cognitive radio systems in the 'white spaces' of the frequency band 470-790 MHz"
- Interference avoidance
 - Geo-location database
 - Spectrum sensing
 - Beacon

Position for WMC

- Continue development of our own 'cognitive radio network'
- Experiments based on existing HW
- Track EU regulation
- Start-up development as soon as regulation becomes clear
 - Go down in the stack to the radio